Optimal and Non-optimal Choice Across Species

Edmund Fantino
University of California, San Diego

We take a behavioral approach to decision-making and, apply it across species. First we review quantitative theories that provide good accounts of both non-human and human choice, as, for example, in operant analogues to foraging (including the optimal diet model and delay-reduction theory). Second, we consider the general impact of new methods to assess the principles thought to control foraging behavior. In the light of recent interdisciplinary advances in this area, we develop a laboratory analogue of a foraging situation, one that would allow us to address Correspondence to Edmund Fantino

Department of Psychology and the Neurosciences Group
University of California, San Diego, 9500 Gilman Drive
La Jolla, CA, 92037-0109 e-mail: efantino@ucsd.edu

Keywords: choice; optimal diet model; delay-reduction theory; observing responses; sunk-cost effect; base-rate neglect.

It is difficult to gauge which of the following the “typical” layperson finds more intriguing: that non-humans often behave according to principles of strict optimality or that humans often behave dramatically non-optimally. In this review, we will present the data that help explain why differences in optimality may be seen across species, concluding that such differences do not reflect fundamental differences in decision-making across species.

Optimal Analogues of Foraging. We begin by reviewing some vintage research that sparked interdisciplinary excitement in the 1980's and 90's between behavioral ecologists and behavioral psychologists. George Collier and his colleagues (e.g., Collier & Rowe-Collier, 1981) developed a laboratory analogue of a foraging situation, one that would allow us to test the assumptions underlying ODM with respect to prey choice. The research we will cite exemplifies DRT in a behavioral laboratory setting.

A canonical prediction of ODM is that, when food is plentiful, only the preferred of two nutritional food items will be accepted. If the two items are equally preferred (i.e., p is typically .5), the forager will accept the less preferred item only when it is the less preferred (i.e., 1-p). In operant analogues of foraging behavior, a probability of 1-p, the choice is between responding on the white-lit key which would return the pigeon to the search phase and a new trial, and responding three times (FR 3) on the red-lit key which would "advance" the pigeon to the "handling phase", variable-Interval (VI) 5-seconds schedule for 4 seconds of food presentation. With a probability of 1-p, the choice is between responding on the white key light (FR 3), returning to the search phase and a new trial, and responding three times (FR 3) on the green-lit key and advancing to the handling phase, here a VI 20-seconds schedule for 4 seconds of food presentation. After food presentation on either the VI 5 or VI 20, a new trial commences with the search phase. Unless probabilities are being explicitly manipulated, p is typically .5 (and therefore 1-p is also .5).

A canonical prediction of ODM is that, when food is plentiful, only the preferred of two nutritional food items will be accepted; as food becomes more scarce, a point is reached where the less preferred item will also be accepted. That point is predicted by both ODM and DRT and is gener-
ally the same for both (Fantino & Abarca, 1985). In operant analogues of foraging, schedule preference is used as a surrogate for food preference—i.e., instead of manipulating the quality of different foods, the ease of acquiring food is varied. A good food source might be one that provides food every 10 seconds, while a poor food source might be one that provides food every 100 seconds. In terms of the situation presented in Figure 1, the VI 5-seconds outcome should always be accepted. The question of interest is whether or not the less preferred VI 20-seconds outcome is accepted and whether its rate of acceptance varies with the search duration (X seconds). Preference of the VI 20-seconds outcome tends to occur only when it is correlated with a reduction in time to reward (DRT) and when it is correlated with energy gain (ODM)—the first finding listed below.

Studies in our laboratory confirmed the following predictions of ODM and DRT (for the mathematical underpinnings of these predictions, see Fantino & Abarca, 1985):

- As search time increases, pigeons shift from rejecting the less profitable of two outcomes to accepting it and this shift occurs precisely at the search duration required by the models (e.g., Abarca & Fantino, 1982).
- When handling times are increased (the VI schedules or outcomes), pigeons shift from accepting to rejecting the less profitable of two outcomes (Ito & Fantino, 1986).
- In a choice between a rich schedule leading to food on only a percentage of trials and a lean schedule always leading to food, pigeons preferred whichever outcome provided the higher overall mean rate of reward (Fantino & Preston, 1989).
- Preference for the preferred outcome decreases as travel time between alternatives increases (that is, pigeons became less selective). The way travel time was manipulated was identical in both studies (Fantino & Abarca, 1985).
- Although Figure 1 shows a single search phase (FI X seconds), the X leading to the preferred and less preferred outcomes (FI 5-seconds and FI 20-seconds, respectively) can be separately manipulated. In other words, we can change the accessibility of either outcome across conditions by separately manipulating X. As predicted, changing accessibility of the more profitable outcome had a greater effect on choice than changing accessibility of the less profitable outcome (Fantino & Abarca, 1985).
- In what is to many a counterintuitive prediction and finding, increased accessibility of the less profitable outcome led to decreased acceptability of that outcome. When the accessibility of the less profitable outcome was held constant, while time leading to the less profitable outcome was varied, it should become more likely to be accepted if the search time leading to the less profitable outcome is too long, because the delay reduction effect at that moment. It has a strictly informative value. Thus, it serves as a reinforcer, then it

○ One issue of abiding interest involves the possible identification of a mechanism by which pigeons, rats (studied by Collier’s group—see reference above) and humans (studied by Fantino & Preston, 1989 and by Stockhorst, 1994) are sensitive to the more optimal outcome, for example, to the higher energy food item. Before discussing this issue, we clarify the distinction between the optimal-foraging and delay-reduction approaches. Central to classical optimal foraging theory (MacArthur & Pianka, 1966) is the notion of maximization required preference for dual reinforcers but DRT required preference for the more immediate smaller reinforcer (for details, see Williams & Fantino, 1994). For this critical area, results were consistent with DRT’s ordinal predictions in 11 of 11 replications. Indeed, the predictions of rate maximization were upheld only when they dovetailed with those of DRT.

○ A sense this result is not at all surprising. An extensive literature on self-control underscores the central role of immediacy in decision-making. But given this fact it is also not surprising that organisms may not be so directly sensitive to a variable such as rate of energy intake. It is our contention that delay-reduction (‘‘delay reduction’’) may be a ‘‘rule-of-thumb’’ guiding successful foraging. Far more often than not, stimuli correlated with delay reduction also lead to a maximization of energy intake or rate maximization. By focusing on these delay-reduction cues the forager does well. Fantino (1988) first proposed this notion in a commentary on Houston and McNamara (1988).

○ We have been elaborated on by Williams & Fantino (1994) and most elegantly by Houston, McNamara, and Steer (2007). One study showed that pigeons prefer whichever schedule provided the higher overall mean rate of reward (Abarca & Preston, 1989). We will briefly note an interesting example that assessed the counterintuitive prediction discussed in the sixth and final pointed earlier. Specifically, Ursula Stockhorst conducted her dissertation research at Heinrich-Heine University in Duesseldorf on this very problem. Students were trained under a successive-choice schedule to make responses in order to interrupt a tone presented through headphones. The response requirement to access the more profitable alternative (which turned off the tone on a VI 5s schedule) was held constant (FI 7.5s), while the requirement to access the less profitable alternative (which turned off a VI 18s schedule) was varied. Results were compatible with previous work exploring the same variables with pigeons: increased accessibility of the less profitable outcome led to decreased acceptability of that outcome (Stockhorst, 1994).

○ In the laboratory and in the field, there is an indication that optimal diet theories are better at predicting foraging behavior in some species than others. After reviewing a wide range of studies covering a large number of species, Sih and Christensen (2001) concluded that such theories are best at predicting the foraging behavior of organisms that feed on immobile prey.

○ While pursuing the mechanism for optimal behaviors is satisfying, unearthing mechanisms for our non-optimal behaviors may be just as interesting. We will consider three areas, each providing a different ‘‘take-home’’ message. The three areas address the following phenomena: (1) information per se does not appear to be reinforcing unless it may be utilized productively; (2) we insist in non-optimal pursuits once we have invested in them (‘‘ sunk cost effect’’); (3) we ignore base rates at our decision-making peril (‘‘base-rate neglect’’). We will review the first two somewhat briefly and then concentrate on base-rate neglect since it provides a particularly instructive story.

○ Observing, we think of ourselves as information seekers and rightly so. Certainly in this age of information technol-
conditioned-reinforcement hypothesis. Interestingly, a wide variety of species make observing responses (including the goldfish, Purdy and Peel, 1988). But although all unequivocal tests have shown that bad news does not maintain observing, this conclusion did not please some who found it counter-intuitive. And indeed, some credible evidence that human observing may be reinforced by stimuli correlated with EXT was provided by Perone and Kaminski (1992) and by Lieberman, Catcho, Nichol, and Watson (1997). However, more recently, Escobar and Bruner (2009) have shown that Perone and Kaminski’s findings are more parsimoniously explained in terms of conditioned reinforcement. Similarly, Fantino and Silberberg (2010) conducted a series of five experiments further exploring the Lieberman et al. studies. They determined that in the Lieberman et al. studies, responses that did not produce “bad news” were actually indicative of “good news,” and thus their results were consistent with a conditioned-reinforcement view. And based on their own results, Fantino and Silberberg concluded that information is reinforcing if and only if it is positive or useful. As required by the conditioned-reinforcement hypothesis, stimuli correlated with bad news or useless news does not maintain observing.

These data from the observing literature could argue that we do not seek all the information that would enable us to be optimal decision makers or that we are judicious and efficient in our information seeking. In any event, that we are less than ideal decision makers is evident from a wide range of other studies. For example, a series of studies showing suboptimal choice (mainly with pigeons), begun by Kendall (1974), and continued by Fantino, Dunn, and Meck (1979), Dunn and Specht (1990), and Stagner and Zentall (2010), among others, has shown that, under certain arrangements of the contingencies, it is possible to get significant deviations from optimal responding.

The research surveyed thus far shows a great deal of variability in the extent to which human beings behave non-optimally or illogically it is less obvious that this should be the case. For example while the “sunk-cost effect” has been reported widely with humans, until recently there was no solid evidence that it occurred with non-humans. Certain lines of research with human participants might persist in a losing course of action, Navarro and Fantino (2005) designed a procedure that mimics the sunk-cost decision scenario. They defined such a scenario as one in which an investment has been made towards a goal, negative feedback concerning the investment has been received, and the participant can persist in the investment or abandon it in favor of a new one. In their procedure, pigeons began a trial by pecking on a key for food. The schedule on the food key arranged a course of action with initially good prospects that turned unfavorable. Of four fixed-ratio (FR) schedules was in effect: short (10), medium (40), long (80), or longest (160). On half the trials, the short ratio was in effect; on a quarter of the trials, the medium ratio was in effect; and on a quarter of the trials either of the two long ratios was in effect. When participants were allowed to make an initial decision, the pigeons emitted the response number required by the short ratio, if no reinforcement had occurred (because one of the longer ratios happened to be in effect), then the initially easy endeavor had become more arduous—the expected number of responses required to food was now greater than it had been the onset of the trial (with the values shown above, 70 responses would now be the expected number, rather than 45 at the onset of the trial).

Navarro and Fantino (2005) gave pigeons the option of escaping the now less-favorable endeavor by allowing them to peck an “escape” key that initiated a new trial. If the short ratio did not happen to be in effect on a given trial, then once the pigeon had completed the short ratio it had the choice to peck the escape key (and then begin anew on the food key). That is, the expected ratio given escape was lower than the expected ratio given persistence. Notice that at this choice point the pigeons encountered a sunk-cost decision scenario. Namely, they had made an initial investment, they had received negative feedback—no reinforcement—and they could either persist in the venture or abandon it in favor of a new and most likely better one. This general procedure allows examination of their ability to re-appraise the sunk-cost effect in two ways. One way was through the presence or absence of stimulus changes. If a stimulus change occurred at the moment when escape became optimal, then the economics of the situation should have been more salient than if no stimulus change had occurred. Navarro and Fantino hypothesized that pigeons responding on this procedure with no stimulus change would persist more than pigeons responding on this procedure with a stimulus change present. The results supported their hypothesis—when stimulus changes were absent, the majority of pigeons persisted to the end of every trial (“sunk-cost behavior”). When changes were present, however, all pigeons escaped as soon as it became optimal (this trend appeared once behavior had become stable). A second way to manipulate uncertainty is by varying the difference between the expected value of persisting and the expected value of escaping. The closer these expected values were to each other, the less salient the advantage of escaping and the more likely the pigeons should be to persist. The results again supported the hypothesis: as the advantage of escaping decreased (although escape remained optimal), persistence rose.

Additionally, by modifying this procedure for use with human subjects, previous findings with human subjects could be extended to a novel format. The above experiments with pigeons were replicated with human adults (Navarro & Fantino, 2005; Navarro & Fantino, 2007) in a computer simulation. In the human experiments, the computer keys were the operant stimuli and feedback was reinforced as reinforcement, and the same contingencies were used. The human data mirrored those of the pigeons. These results suggest that at least two factors that contribute to the sunk-cost effect—economical salience and the presence of discriminative stimuli—may affect both non-human and human participants in a similar manner.

The sunk-cost effect is of more than academic interest. All of us have likely experienced situations in which we have persisted at an endeavor long after it was prudent to continue. Moreover we are all aware of decisions resembling the sunk-cost effect in the news. For example, the sunk-cost effect has been implicated in the Concorde airplane (indeed, we have the phrase “Concorde Fallacy”) and the Vietnam War. In many real world cases, it is difficult to discriminate when a cause is lost or the point at which it becomes lost. Moreover, persistence in pursuit of a goal is clearly important in our society. A number of studies have argued that persistence is the backbone of self-control (and the avoidance of impulsive decision-making). The great American inventor Thomas Edison is believed to have said: “Many of life’s failures are people who did not realize how close they were to success when they gave up”. The trick of course is in discriminating when to persist. Our ability to discriminate craftily will depend upon how much relevant information we have in hand. Given sufficient information (or discriminative stimuli) people and pigeons appear to avoid the sunk-cost effect.

Base-rate neglect. This robust phenomenon refers to the fact that people typically underweight the importance of base rates in an attempt to combine two or more sources of information (e.g., Goodie & Fantino, 1996; Tversky & Kahneman, 1982). In base-rate experiments, participants are generally provided with information about base rates, which concern how often each of two outcomes occurs in the general population, and case-specific information, such as witness testimony or the results of a diagnostic medical test. Typically, the participant’s task is to select the more likely of the two outcomes or to provide a verbal estimate of the probability of one or both outcomes. An iconic base rate problem, described by Tversky and Kahneman, is the taxi cab problem:

A cab was involved in a hit and run accident at night. Two cab companies, the Green and the Blue, operate in the city. You are given the following data:

(a) 67% of the cabs in the city are Blue and 33% are Green.

(b) A witness identified the cab as Green. The court tested the reliability of the witness under the same circumstances that existed on the night of the accident and concluded that the witness correctly identified each one of the two colors 50% of the time and failed 50% of the time.

What is the probability that the cab involved in the accident was Blue rather than Green?

In this transparent version of the problem, the participant is given the information that the witness is totally unreliable (correctly identifies blue and green taxis under the illumination conditions of the accident at 50%) and that two-thirds of the taxis in the city are blue and one-third are green.

If both pieces of information (base rates of the two taxicab types, and witness accuracy) were considered it would be clear that the probability that the taxi was Blue is 67%. For less transparent values the information would be combined according to Bayes’s Theorem in order to find the precise probability. Participants of course are not expected to utilize Bayes’s Theorem. However, they might be expected to utilize both sources of information and come up with an appropriate estimate. Nonetheless, more sources participants overweight the case-specific information and ignore, or at least underweight (“neglect”) the base-rate information. Thus, in the simple example above, participants tend to assert that the probability is 50% since the witness is uninformative.

The robustness of base-rate neglect is not simply of academic interest. Striking evidence has been reported involving assessments of school psychologists (Kennedy, Willis, and Faust, 1997), physicians (e.g., Eddy, 1982) and AIDS
counselors (Gigerenzer, Hoffrage, & Ebert, 1998). Can we learn something valuable about the variables that control base-rate neglect by adopting a behavioral approach? For example what if we had participants experience both the base rates and the accuracy of the case-cue information in a behavioral task over many trials? Would base-rate neglect still occur (in paper and pencil tasks, of course, partici-
pants are given the base rates and the case-cue accuracies). The difference in described contingencies and experienced contingencies is potentially profound (e.g., Fantino & Na-
varro, 2011). In order to investigate experienced base rates Stolarz-Fantino and Fantino (1990) suggested using a modi-
fied matching-to-sample procedure as a base-rate analogue. In the typical matching-to-sample procedure the sample appears on a single lit key and is one of two colors, here blue and green. After the sample is extinguished, two “compari-
son stimuli” appear, blue and green. The task of the human or pigeon participant is to pick the stimulus that “matches” the sample. In the modified procedure used in the base-rate analogues from our laboratory, however, “matching” is not necessarily the right response. Instead, selection of the blue and green comparison stimuli is each correct a certain per-
centage of the time.

Consider the following example, illustrated in Figure 2. Following a blue sample, selection of blue is correct 67% of the time and selection of green is correct 33% of the time. Following a green sample, selection of blue is again correct 67% of the time and selection of green is correct 33% of the time. It is evident that the sample is totally uninformative: it is not a discriminative stimulus for selecting either compari-
son stimulus. Note too that the values here are completely nonverbal delayed matching-to-sample procedure.

Goodie and Fantino (1995, 1996) with humans and Hartl and Fantino (1996) with pigeons explored this behavioral base-rate problem, with a variety of values in different con-
texts. How did human participants do when the sample was uninformative? They should never have picked green since blue was correct more often. If participants’ choices mirrored those in the single trial paper-and-pencil version of the taxicab problem, however, we might expect that green would be chosen following a green sample on the 50% of trials. In fact green was matched on 56% of trials. These results reflected base-rate neglect. Moreover base-rate neglect persisted over the 400 trials studied, even when the underweighting of base rates cost the participants money (Experiment 2 of Goodie & Fantino, 1995). Pigeons, how-
ever, chose optimally. The results from other conditions sup-
ported the same general pattern: for humans, sample infor-
mation was over-weighed and the base-rates were neglected (though not always ignored); for pigeons, choices were ap-
propriately controlled by both sample accuracy and base rates. In other words pigeons’ choices reflected appropriate integration of the two sources of information.

Would base-rate neglect eventually disappear with a suf-
ficient number of trials beyond the 400 employed by Goodie and Fantino (1995)? Goodie and Fantino (1999) studied par-
ticipants for a grueling 1600 trials and found a gradual dimi-
nishment of base-rate neglect. In a sense this is uninteresting, however: Life does not typically offer 1600 trials (or even 400!). The important conclusions to be drawn from these experiments are that base-rate neglect occurs not only in paper-and-pencil tasks but also in behavioral tasks wherein the accuracy of the sample (“witness”) and the base rates are directly experienced.

Hartl and Fantino (1996) and Stolarz-Fantino and Fan-
tino (1995) proposed that differences in learning histories between humans and pigeons may have been responsible for the differences in the results between the two species. That is, from early childhood, humans are exposed to many situa-
tions in which matching items that are in some way the same are reinforced. Laboratory pigeons lack a comparable histo-
ry, which enables them to learn the optimal pattern of choice in tasks such as that of Hartl and Fantino without bias. In or-
der to strengthen this interpretation it would be desirable to show that humans will not neglect base rates when tested on problems where prior learning is not likely to interfere and that pigeons would show base-rate neglect if given, for ex-
ample, a history of matching that we presume humans have.

Support for this possibility with human participants was generated by Goodie and Fantino (1996, 1999), in which they demonstrated that humans would not display base-rate neglect when symbolic matching-to-sample tasks were used in place of the usual identical matching-to-sample tasks used in the prior research. For example, when the sample was a line orientation (vertical or horizontal) and the comparison stimuli were colors (blue and green) base-rate neglect did not occur. When the symbolic matching-to-sample task in-
volved a learned relationship, however, base-rate neglect oc-
curred (for example when the sample was the word “blue” and the word “green” and the comparison stimuli were blue and green). Similarly, when humans were given exposure to base rates without samples (that is when there were no competing sources of stimulus control), they later were sensitive to base rates when a matching-to-sample procedure was introduced (Case, Fantino, & Goodie, 1999).

To complete the story that base-rate neglect may result from prior learning, Fantino, Kanevsky, and Charlotte (2005) gave pigeons an extensive history of pretraining (more than 100 sessions) with informative case cues. During trials in these sessions, sample accuracy was 100%– that is, the pi-
geons’ matching responses were always reinforced and non-
matches were never reinforced. Following this pretraining, the pigeons displayed base-rate neglect when confronted with problems that varied base rates and sample accuracy. As Fantino et al (2005) concluded: “After a substantial his-
tory of matching, pigeons are likely to neglect base rates, whereas humans are likely to maintain their sensitivity to the multiple sources of stimulus control present in the matching-to-sample task” (p. 825).

Research by Zentall and Clement (2002) uncovered an additional factor that contributes to base rate neglect by pi-
gen. Under some conditions, the frequency with which a sample occurs can bias matching-to-sample performance; this becomes evident when other factors (e.g., the probabil-
ity of reinforcement associated with each comparison) are held equal and when a delay occurs between presentation of the sample and the comparisons, thus increasing the relative importance of memory. This finding is congruent with re-
sults of studies of rate base neglect in humans (e.g., Tversky & Kahneman, 1982).

Conclusion

In many decision-making sets organisms choose op-
timally. These findings gave rise to quantitative theories that provide good accounts of choice, as, for example, in operant analogues to foraging (including the optimal diet model and delay-reduction theory). Despite this comforting display of optimality, it remains a source of consternation that human decision-making is often dramatically non-
optimal. We reviewed the observing-response literature which suggests that humans and non-humans share an aversion to “bad news” and shun it in favor of “no news” or unreliable information. Finally we discussed behavioral approaches to two infamous examples of defective decision-making in hu-
mans, the sunk-cost fallacy and base-rate neglect. The ex-
perimental stories that we have narrated both demonstrate the utility of studying classic phenomena in judgment and decision making from a behavioral perspective. We could have selected other phenomena as well. But the point is that a behavioral approach can shed light on the factors that lead to our making good and bad decisions. We selected the two phenomena we did because they not only point to the utility of a behavioral approach to decision-making but they also highlight the value of conducting inter-species comparisons.

In the case of the sunk-cost effect humans and pigeons be-
haved in a comparable manner, strengthening the generality of our conclusions. In the case of base-rate neglect the differ-
ent initial results obtained with humans (non-optimal) and pigeons (optimal) led to testable hypotheses about the con-
ditions promoting base-rate neglect. In both cases, maladap-
tive decisions resulted from the misapplication of previously acquired strategies (for example, inordinate persistence in the sunk-cost effect) and an excessive focus on case cues in base-rate neglect.

References

Arkes, H.R., & Ayton, P. (1999). The sunk cost and Con-
corde effects: Are humans less rational than lower ani-
mal? Psychological Bulletin, 125, 591-600.
doi.org/10.1037/0033-2909.125.4.591
Bloomfield, T. M. (1972). Reinforcement schedules: Con-
tingency or contiguity. In R. M. Gilbert & J. R. Millenson
training without case cues reduces base-rate neglect. Psy-
echonomic Bulletin & Review, 6, 319-327.
doi.org/10.3758/BF03121237
analysis of optimal foraging behavior: Laboratory simula-
tion. In Foraging behavior: Ecological, ethological, and
Cambridge, MA:Ballinger.
Dinsmoor, J. A. (1983). Observing and conditioned rein-
cforcement. Reinforcement: Behavioral analyses
Academic Press.
Foraging behavior: Ecological, ethological, and
Cambridge, MA:Ballinger.
Dinsmoor, J. A. (1983). Observing and conditioned rein-
Optimal and Non-optimal Choice 53


PMid:3209956 PMCID:1338906


PMid:8354964 PMCID:1322152


PMid:17575906 PMCID:1868584


PMid:20885808 PMCID:2831655


PMid:16811758 PMCID:1333219


PMid:2299288 PMCID:1326304


PMid:11212635


PMid:15762377 PMCID:1139497


PMid:16812679 PMCID:1322102


PMid:16811486 PMCID:1333777


PMid:16812743 PMCID:1334462


PMid:2103586 PMCID:1323001


PMid:15762377 PMCID:1139497


PMid:20354600 PMCID:1332975


PMid:1338674


PMid:16812343 PMCID:1347908


PMid:16812333 PMCID:1347840


PMid:16812154 PMCID:1332975


PMid:16181446


